Secondary Education Examination
Specification Grid, 2078

Grad	: 11 and 12															jec	: M	the	ma	cs	Mat	00	an	00		
SN	Content Area	Wor										Com	mpet	ncy	evel											
		hour		wled	(16			Unde	stand	ding ((24\%)				licat	(4)				High	er Ab	lity	(20\%)			
			${ }^{0}$		$\begin{aligned} & 0 \\ & 6 \\ & n \end{aligned}$		O		$\frac{0}{6}$		$\stackrel{3}{4}$		${ }^{\circ}$				$\frac{0}{3}$		${ }_{2}$		告		$\stackrel{3}{3}$			
				\sum_{i}^{n}				$\begin{aligned} & \frac{9}{2} \\ & \frac{2}{\pi} \\ & \hline \end{aligned}$		$\begin{aligned} & \frac{9}{4} \\ & \stackrel{y}{n} \\ & \hline \end{aligned}$		$\frac{y}{i n}$		$\frac{9}{4}$		$\frac{y}{i n}$		$\frac{\text { n }}{\underline{y}}$		$\frac{n}{E}$		$\frac{y}{i n}$		$\frac{y}{y}$		
1	Algebra	44																							20	$\begin{aligned} & \text { MCQ: } 2 \\ & \text { SAQ: } 2 \\ & \text { LAQ: } 1 \end{aligned}$
2	Trigonometry	12																							6	MCQ: 3
3	Analytic Geometry	20																							9	$\text { SAQ: } 2$ LAO:
4	Vector	12																							6	
5	Statistics \& Probability	12	2	2	2	10	5	5	1	5	1	8	2	2	4	20	1	8	2	2	1	5	1	8	6	$\begin{aligned} & \text { MCQ: } 1 \\ & \text { SAQ: } 1 \end{aligned}$
6	Calculus	48																							22	MCQ: 4 SAQ: 2 LAQ: 1
7	Computational methods or Mechanics	12																							6	$\begin{aligned} & \text { MCQ: } 1 \\ & \text { SAQ: } 1 \end{aligned}$
	Total	160		1					18																75	$\begin{gathered} \text { MCQ: } 11 \\ \text { SAQ: } 8 \\ \text { LAQ: } 3 \\ \hline \end{gathered}$

Question format plan								
S.N.	Types of Questions	Marks per question	Number of questions				Total number of questions	Total Marks
			Knowledge	Understanding	Application	Higher Ability		
1.	Multiple Choice Question	1	2	5	2	2	11	11
2.	Short Answer Question	5	2	1	4	1	8	40
3.	Long Answer Question	8	0	1	1	1	3	24
	Grand Total		4	7	7	4	22	75

Note:

- Appropriate extra time will be provided for the handicapped students and the alternative questions to the figure-based questions should be prepared for blind students.
- Questions should be prepared by giving the context and one question may have more than one sub-questions.
- Application and higher ability questions can be made by relating the other content areas.
- Questions should be made by addressing all the sub-areas of content.
- At least one multiple choice question should be asked from each area (Trigonometry, Analytic geometry and Vector).

Secondary Education Examination
 Model question-2080

Subject: Mathematics (Mat.008)
Grade: XII
Full Marks: 75
Time: 3 Hrs.
Attempt all the questions.

Group A: Multiple Choice Questions $(1 \times 11=11)$

Rewrite the correct option in your answer sheet.

1. What is the number of permutations of n different things, taken r at a time while each thing may be repeated any number of times in any permutation?
[K]
a. n !
b. n^{r}
c. $(n-1)$!
d. $\frac{n!}{(n-r)!}$
2. What is the sum of first 5 odd natural number?
[U]
a. 15
b. 25
c. 42
d. 255
3. In a triangle $\mathrm{ABC}, \angle \mathrm{C}=30^{\circ}, \mathrm{b}=\sqrt{3}$ and $\mathrm{a}=1$. What type of triangle is ABC ?
a. Right angled
b Isosceles
c. Isosceles right-angled
d. Scalene
4. What is the value of k so that the length of the tangent from $(5,4)$ to the circle $x^{2}+y^{2}+$ $2 k y=0$ is 1 .
a. -5
b. -4
c. 4
d. 5
5. Given $\vec{a} \cdot \vec{b}=48,|\vec{a}|=15$ and $|\vec{b}|=4$, what is the value of $|\vec{a} \times \vec{b}|$?
a. 12
b. 36
c. 48
d. 60
6. What is the probability of getting 53 Friday or Saturday in a leap year?
a. $\frac{1}{7}$
b. $\frac{2}{7}$
c. $\frac{3}{7}$
d. $\frac{2}{53}$
7. What is the derivation of $\tanh ^{-1} x$?
a. $\frac{1}{1-x^{2}},|x|<1$
b. $\frac{2}{1-x^{2}}, \quad|x|>1$
c. $\frac{2}{x^{2}-1},|x|<1$
d. $\frac{1}{\sqrt{x^{2}-1}}|x|>1$
8. Which one of the following is equal to $\lim _{x \rightarrow 0} \frac{3 x-\sin x}{2 x}$?
[U]
a. 3
b. 3
c. 1.5
d. 1
9. Which one of the following represents the equation of tangent to the curve $y^{2}=4 x$ at the point $(1,2)$?
a. $x+y+1=0$
b. $x-y+1=0$
c. $x+y-1=0$
d. $x-y-1=0$
10. The volume of a sphere is increasing at the rate of $25 \mathrm{~cm}^{3} / \mathrm{sec}$. At what rate the radius is increasing at the instant when the total surface area of a sphere is $10 \pi \mathrm{~cm}^{2}$?
a. $\frac{\pi}{4} \mathrm{~cm} / \mathrm{sec}$
b. $\frac{4}{\pi} \mathrm{~cm} / \mathrm{sec}$
c. $\frac{5}{2 \pi} \mathrm{~cm} / \mathrm{sec}$
d. $100 \pi \mathrm{~cm} / \mathrm{sec}$
11.The system of equation $2 x+3 y=5$ and $x-y=0$ has...
a. no solution
b. infinitely many solution
c. one solution
d. finitely many solution

OR
A car moving with a velocity of $15 \mathrm{~m} / \mathrm{s}$ has a uniform acceleration of $2 \mathrm{~m} / \mathrm{s}^{2}$. If it moves for 2.5 sec , find it's final velocity.
a. $10 \mathrm{~m} / \mathrm{s}$
b. $15 \mathrm{~m} / \mathrm{s}$
c. $20 \mathrm{~m} / \mathrm{s}$
d. $24 \mathrm{~m} / \mathrm{s}$

$$
\text { Group "B" } \quad(5 \times 8=40)
$$

12. In the expansion of $(x+a)^{n}, \mathrm{n}$ is a positive integer.
a. Write the general term of the expansion.
b. If a is replaced by $(-a)$, what is the general term of the expansion?
c. How many terms are there in the expansion of $(x+a)^{n}$?
d. Write the expansion of e^{x}.
e. State the relation between $C(n, r), C(n, r-1)$ and $C(n+1, r)$ for $r \leq n$
13.a. Use De-moivre's theorem to solve $x^{3}=-1$.
b. Solve the following system of equations by using row equivalent method:

$$
2 x-y+z=-1, x-2 y+3 z=4 \text { and } 4 x+y+2 z=4
$$

14.a. In any triangle ABC , prove that: bc $\cos ^{2} \frac{A}{2}+c a \cos ^{2} \frac{B}{2}+a b \cos ^{2} \frac{C}{2}=s^{2}$ where s is semiperimeter of the triangle.
b. The foci of the hyperbola coincide with the foci of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$, find the equation of the hyperbola if its eccentricity is 2 .
15. a. A man running a race course notes that the sum of his distance from the two flag posts is always 10 m and the distance between the flag posts is 8 m . Illustrate and interpret the situation with diagram.
b) If $A, B, C \& D$ are any four points, show that:

$$
\begin{equation*}
\overrightarrow{A B} \cdot \overrightarrow{C D}+\overrightarrow{B C} \cdot \overrightarrow{A D}+\overrightarrow{C A} \cdot \overrightarrow{B D}=0 \tag{2HA}
\end{equation*}
$$

16. The following table shows hours of time spent by five students of grade 12 :

Hours spending on study book (X)	$\mathbf{5}$	$\mathbf{7}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$
Hours spending on playing game (Y)	5	4	3	2	1

a. Estimate the hours spending on playing game who spend 6 hours in study books.
b. Find the coefficient of correlation between X and Y .
17. a. $\mathrm{f}^{\prime}(\mathrm{x})$ and $\mathrm{g}^{\prime}(\mathrm{x})$ are derivatives of the functions $\mathrm{f}(\mathrm{x})$ and $\mathrm{g}(\mathrm{x})$. Write the relation between $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ and $\lim _{x \rightarrow a} \frac{f r(x)}{g \prime(x)}$ when both expressions give $\frac{0}{0}$ form.
b. Write the derivative of $\sinh x$ with respect to x.
c. What is the expression equal to $\int \frac{1}{x^{2}+a^{2}} d x$?
d. Write a differential equation of first order and first degree.
e. Write a difference between derivative and antiderivative?
18.a) Evaluate: $\int \frac{d x}{2+\cos x}$
b) Solve: $\sec ^{2} x+\tan y d x+\sec ^{2} y \tan x d y=0$
19.a. Solve the following system of equations by Gauss seidel method:

$$
\begin{aligned}
& 3 x_{1}+x_{2}=5 \\
& x_{1}-3 x_{2}=5
\end{aligned}
$$

b. Using simplex method to maximize $z=5 x-3 y$
subject to the constraints

$$
\begin{align*}
& 3 x+2 y \leq 6 \tag{3A}\\
& x-3 y \leq 4 \\
& x \geq 0, y \geq 0
\end{align*}
$$

OR
a. A bullet of mass 25 gm moving $250 \mathrm{~m} / \mathrm{s}$ penetrates into a tree trunk $\&$ is then brought to rest in 0.02 seconds. Find the distance of penetration of the tree-trunk.
b. Find two like parallel forces acting at a distance of 2.5 m apart, which are equivalent to a given force of 30 N . The lines of action of one being at a distance of 50 cm from the given force.

Group "C"

20.a) In how many ways can the letters of the word 'I N T E R V A L' be arranged so that: [3U]
i. all vowels are always together?
ii. the relative positions of the vowels and constants are not changed?
iii. the vowels may occupy only the odd positions?
b. Show that $\log _{e} 2=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdots$ to ∞
c. Prove by the method of induction that $1.3+2.4+3.5+\ldots n(n+2)=\frac{n(n+1)(2 n+7)}{6}[3 \mathrm{U}]$
21.a. In the figure alongside triangle ABC is inscribed in a parabola $y^{2}=4 a x$.
i. Express all the coordinates of triangle ABC in terms of x coordinates.
ii. Prove that the area of triangle ABC is

$$
\begin{equation*}
\frac{1}{8 a}\left|\left(y_{1}-y_{2}\right)\left(y_{2}-y_{3}\right)\left(y_{3}-y_{1}\right)\right| \tag{2~A}
\end{equation*}
$$

b. In any triangle $\mathrm{ABC}, a(b \cos C-$ $c \cos B)=b^{2}-c^{2}$
c. Prove that the unit vector perpendicular to each of the vectors $\overrightarrow{2 \imath}-\vec{\jmath}+\vec{k} \& \overrightarrow{3 \imath}+\overrightarrow{4 \jmath}-\vec{k}$ is $\frac{-3 l+\overrightarrow{5}+\overrightarrow{+1 k}}{\sqrt{155}}$ and the sine of an angle between them is $\sqrt{\frac{155}{156}}$
22.a. Illustrate derivative as a rate measure with suitable example.
b. Prove that $\int \frac{d x}{a+b \cos x}=\tan ^{-1}\left[\frac{4 \tan \left(\frac{x}{2}\right)-3}{\sqrt{7}}\right]+$ constant, where a and b are positive constants.
c. Does $x \frac{d y}{d x}=\sqrt{x^{2}+y^{2}}+y$ represent a homogeneous differential equation? give reason. Also show the equation.

